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Free convection in a horizontal porous layer with a
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Abstract. The natural convective flow in a fluid-saturated porous medium is considered for an infinite horizontal
channel with the bottom wall being partially heated or cooled. The flow and heat transfer are analysed for a range of
values of the two non-dimensional parameters which define the problem, namely the Rayleigh number Ra and
aspect ratio E. Numerical solutions are obtained for = 1 and E = 0.1 for both heated and cooled cases and for a
range of values of Ra. In the heated case, the nature of the flow is seen to change from unicellular for smaller values
of Ra to multicellular for larger Ra, with the value of Ra at this changeover being decreased as E is decreased. Also,
for this case, a range of values of Ra is found over which both unicellular and multicellular flows are possible. For
the cooled case, a boundary layer is seen to develop on the bottom wall as Ra is increased for both the values of 
taken. Finally, a solution valid for E < 1 is obtained and is compared with the numerical solutions for E = 0.1.

1. Introduction

The convective flow of fluid through horizontal porous layers heated or cooled from below is
of importance in many practical applications, for example, in the study of the behaviour of
geothermal systems [1]. Extensive work has been done on the cavity geometry with side
walls being differently heated, for example, by Daniels et al. [2] and Poulikakos and Bejan
[3]. For the horizontal geometry, Cheng et al. [4] studied the free convection in island
geothermal reservoirs by applying an exponential temperature distribution on the bottom
heated wall, with recharge and discharge through the ocean sides. Numerical results were
obtained for Rayleigh numbers as high as 2000. Elder [5, 6] considered the convective flow in
a horizontal cavity with the central part of its bottom wall being heated to maintain a fixed
temperature. He observed that more than one cell exists in the half cavity when the aspect
ratio (defined as the ratio of the heated length to the height of the cavity) is greater than
about 3. Recently, Prasad and Kulacki [7] also reported some results for this horizontal
cavity geometry with a localized heated bottom wall but with the side walls as well as the
unheated part of the bottom wall being assumed to be adiabatic. Their emphasis was put on
revealing the effects of the Rayleigh number and the aspect ratio of the cavity (defined as the
ratio of the width to the height of the cavity) on the free-convection heat transfer. Some
qualitative description was given in their paper.

Much attention has also been paid to the study of the bifurcation structure or mode
exchange associated with steady free convection in such a horizontal geometry with or
without boundary imperfections. It is an analogue of the classical Rayleigh-Benard problem
and is usually known as Lapwood convection in the porous medium case. Riley and Winters
[8] studied the influence of aspect ratio and the effect of tilt on the mode exchange processes
and the unfolding of the bifurcation. The influence of boundary imperfections on this
bifurcation structure has been discussed in a series of papers by Rees and Riley [9, 10] and
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Fig. 1. The geometrical configuration.

Impey et al. [11]. The above-mentioned investigations have all been concerned with the
heated case where the basic conduction region becomes unstable, and as well it is of interest
to know what will happen when part of the bottom wall is maintained at a temperature lower
than the ambient conditions, i.e. the bottom wall is partly cooled. Kimura et al. [12] studied
the free convection near a finite cold plate facing upward in a porous medium. They found
that a distinct horizontal boundary layer formed, "chopped off" to finite length by the edges
of the plate. However, to our knowledge, no effort has been given to other configurations.

In this study, two-dimensional steady-state free convection in a infinite horizontal porous
layer with part of its bottom wall being heated or cooled is investigated. The configuration is
shown in Fig. 1 where the upper and bottom walls are assumed to be impermeable. The
temperature Tw on the central part of the bottom wall is higher (heating) or lower (cooling)
than the constant temperature T applied on the wall away from the heated (or cooled)
section. The temperature of the upper wall and porous layer at large distances from the
heated section are also assumed to be T0 . The temperature of the heated section T is
assumed to be symmetric, so that only the region x - 0 need be considered. The object of
present study is to reveal the effects of the Rayleigh number Ra and aspect ratio = HIL on
the convection pattern and heat transfer characteristics for both the heated and cooled cases.
Numerical results have been obtained for the values of Ra within a large range of interest.

For the heated case and = 1, we found that for relatively small values of Ra the flow is
unicellular. Then, as Ra is increased, we found a range of values of Ra over which two
different solutions exist, one with one cell, and the other with two cells. As Ra is increased
further, this two-cell solution appears to be only one possible. For the cooled case, again
with E = 1, a boundary layer is seen to develop on the bottom wall as Ra is increased, with
the flow and heat transfer becoming increasingly confined to this region. For the smaller
aspect ratio of e = 0.1 and the heated case, the flow quickly develops into a multicellular
structure (by Ra = 7, we found 6 cells), while for the cooled case a boundary layer again
develops on the bottom wall. An analytic solution is possible when E < 1 and Ra is of 0(1),
and this is used to compare with the numerical results.

2. Equations

To investigate free convection in a fluid-saturated porous layer, it is assumed that Darcy's
law is valid and the fluid is assumed to be a normal Boussinesq fluid. The equations
governing the conservation of mass, momentum and energy for the steady two-dimensional
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flow in an isotropic, homogeneous porous medium are given by

du dv
-+- =0, (1)

k dp

dp g . , (3)
vL dy

dT dT /d 2 T d2T\
u d + y = a -2 + y2 (4)

p = p[1l - f(T- T0)], (5)

where u and v are the velocity components as given by Darcy's law in the horizontal and
vertical direction respectively; p, /x and /5 are density, viscosity and thermal expansion
coefficient of the convecting fluid, k is the permeability of the porous medium, a = kl(poc)f
is the effective thermal conductivity of the saturated porous medium and (poC)f the product
of density and specific heat of the convecting fluid. T, p and g are the temperature, pressure
and the gravitational acceleration respectively; p0 is the density when the temperature is T0 .
The geometrical configuration is shown in Fig. 1.

The wall temperature T(x) is given by

Tw(x ) = To + At 0w(lxl) , (6)

where 0w is a prescribed dimensionless temperature and AT is a measure of the applied
temperature difference. The sign + is taken for the heated case and sign - for the cooled
case.

To express the problem in a dimensionless form, it is natural to scale the coordinates by
putting

x -=y (7)
£=L' - H (7)

A suitable velocity scale is

UO = k (pg3 AT) H (8)UL

The velocity, pressure and temperature are then made non-dimensional by writing

u - L v
I= U=-- (9)

vO H U '

k p (T- T) (10)
8= (ATFL UO AT (10)

Note that the different length scales used for coordinates in (7) require, through the
continuity equation (1), different scales for the velocities in (9).
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Introducing the dimensionless stream function i defined by

= =---, d -(11)
Oy ax '

the dimensionless form of the governing equations, after eliminating the pressure term (and

on dropping bars for convenience), is

2 d 2 d 24, do
E 2+ 2 (12)

aX2 dy2 dX 

2 20 d 20 R o d d d (13)
e - - -=eRa - (13)

dX2 0y 20 y x x y

where e = HIL is the aspect ratio and Ra is the Rayleigh number defined as

HU k(pg/3 AT)H 2
Ra = -(14)

a a L

On the impermeable walls, the boundary conditions are given by

=, 0 [ { 0AX ), x 1 on y=0,t~ o ~, · 0, otherwise, ony=,
(15)

i¢=0, 0=0 ony=1.

We have taken the temperature distribution on the bottom wall such that the problem is
symmetric about x = 0. Hence only the solution in x 0 needs to be considered. The
symmetry condition

do
=0, -=0 onx=0, 0<y<l, (16)

ax

is applied on the axis of symmetry. In the region far away from the axis of symmetry, the
condition of no fluid flow can assumed, and the temperature approaches the ambient one,
namely

ur-0, --->0 asx->o, 0<y<l. (17)

The particular form of Ow(x) is chosen to be a quadratic function in this study, namely

0 (x)= 1-x 2 , 0 <x1, (18)

though we do not expect that the qualitative form of the results will be greatly affected by
different forms of Ow(x).

3. Numerical method

We investigated the free convection flow by solving the governing equations (12) and (13)
numerically. To obtain an accurate numerical solution, the boundary conditions at infinity
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need to be applied at a sufficiently large distance, while for the sake of computational
efficiency we require the solution domain to be of reasonable size. This suggests the use of a
transformation of the x-variable and we adopted

E = In(1 + x) /In 2 (19)

which maps x E [0, 1] to E [0, 1] without too much change, but for E > 1 gives a relatively
large value of x for relatively small values of . This feature of the transformation (19)
enables us to solve the problem with a small step-length in the area above the heated or
cooled section where the variation is expected to be the greatest; at the same time a
reasonably small value of E can be used to cope with the condition at infinity. After several
trial turns, we found = 3 to be large enough for our study. The equations in terms of the
transformed variable are then

12 d2f E2 o 
2~ln 2a In 2 d (20)

2' In 2 d02 2 de dy 2 E

d2 e d02 O d0 dip RaC di dO0
n2 - -- -+ 2 1n2 2 E Ra - . (21)

2 In2 d2 2 d y d ady dE ds dy

The boundary conditions become

fr= 0, U ={l2(2-) , otherwise, on y =0,

6i ==0 ony=1,

dO de ~~~~~~~~~~~~~~~~(22)
= -=0 on =0,

r-0, 0---0 as -o.

A finite-difference grid was set up such that AE = 6. IM and Ay = 1/N, where M and N are
integers (and ,. = 3). The first- and second-order derivatives were discretized by using
central finite-differences so that the local truncation errors are max{O(A6 2 ), O(Ay2 ). The
discrete counterparts of equations (20) and (21) are then

Cid. +- C 2t+l j+ C 3 ,,+1 + C +41,,-l + C+t-,_l = Cyl(0t+l. - 01) , (23)

Clot, + C20+,, + C3 0t, 1+ 1 + c4 0,,_ + C 50_l,J

= 2 [(+,,, + l - J,, 1 )( 0+,- ,+ - (q , - ) - (24)

for i = 0,1, . . . , M, j = 1, . . , N, where ,! and 0,, are approximations of qi(i A , j Ay) and
O(i AE, j Ay). The coefficients Ck, k = 1, 2 ... , 5 and y, y2 are given by

2 2-Ac a 2 \ 
(I22 +

2= 1 2 - 1 2' A
In2 A 2 2 A[ '
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2' ^
C3 = C4 = In 2 2'

C= 2( 2 -' 1 2-Ae ) (25)
C5 A1 2 2

1 1 eRa 1
1 -2 A6 ' /2 = 4 A Ay

The boundary condition d0/d = 0 was replaced by

0-,=01,J for 1 j N. (26)

The treatment for the other boundary conditions is straightforward.
The coupled non-linear system of finite-difference equations (23) and (24) was solved by

using an alternating Gauss-Seidel iteration; namely, starting with an initial guess for 06,, use
equation (23) to calculate an estimate for ,, by performing one step in the Gauss-Seidel
iteration; these values were then used in equation (24) to calculate a new estimate for ,, by

the same procedure. This process was terminated if, for two successive iterations ,'(k ), (k,- 

and 0(,), 0k-), the following criteria were satisfied simultaneously:

. | < f (k) _ o(k- 1)I < (27)

where oa and or2 were given tolerances. It was found that 10-6 was sufficient for both of
them.

4. Results

The effects of the Rayleigh number on the free convection pattern and heat transfer
characteristics were investigated both for the heated and cooled cases by fixing the aspect
ratio at = 1 and increasing the values of the Rayleigh number Ra. The isotherms and
streamlines are shown for selected values of Ra. The effects of the aspect ratio were then
considered by obtaining the results for = 0.1. An asymptotic analysis was performed to
reveal further the case where 1 and Ra is of 0(1). All the streamlines presented in this
paper are equally spaced between the maxima and the minima of the values of the stream
functions. The values of these maxima and minima are given in the captions for the figures.
The isotherms (except those for the asymptotic solution) are also equally spaced between 0
and 1 with the bottom left one representing 0 = +0.9 and the interval being 0.1 for the
heated and cooled cases respectively.

4.1. Effects of the Rayleigh number; = 1

(a) Heated case
Figure 2 and Fig. 3 show the isotherms and streamlines, respectively, for selected values of
Ra. Contours are shown only for 0 - 6 2; for > 2 the fluid was in its ambient state to the
scale of the plots. For Ra = 1 the isotherms are almost the same as those for pure conduction
(Ra = 0), indicating that the heat transfer is dominated by conduction when the Rayleigh
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Fig. 2. Isotherms for the heated case for = 1 and a range of values of Ra.
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Fig. 3. Streamlines for the heated case with E = 1 and a range of values of Ra. The maximum and minimum of the
stream function are -0.0402, 0 at Ra = 0; -0.0406, 0 at Ra = 1; -0.0596, 0 at Ra = 50; -0.0562, 0 at Ra = 100;
-0.0331, 0 at Ra = 400 (one cell); -0.0237, 0 at Ra = 800 (one cell); -0.0305, 0.0082 at Ra = 400 (two cells);
-0.0214, 0.0066 at Ra = 800 (two cells).

Y

0

O

y

0

Y

0

I

r

¥ 



Free convection in a horizontal porous layer

number is low. The streamlines for Ra = 0 and Ra = 1 show that a cellular flow of clockwise
circulation is set up above the heated section of the bottom wall. It is well known that there
is no fluid flow for Rayleigh numbers below a certain critical value if the bottom wall is
uniformly heated; Sutton [13] obtained that this critical value is 47r2 in an infinite porous
layer. The reason for the occurrence of unicellular flow for Rayleigh numbers far below that
critical value is due entirely to the effect of the localized heating. It is interesting to note that
for these values of the Rayleigh number this cellular flow has little influence on the
temperature distribution and consequently has little influence on the heat transfer.

When the Rayleigh number is increased, the isotherms are perturbed from those of the
conduction-dominated regime and they develop into a half "mushroom" shape, which
indicates that convection is becoming the dominant mechanism of heat transfer. The
streamlines show that the fluid near the heated part of the bottom wall moves laterally
towards the central region (x = 0) which enhances the heat transfer on the bottom wall. Near
the axis of symmetry, a thermal plume is formed carrying heat to the upper portion of the
central layer where the heat is transferred through the upper wall as well as being carried
away by outward lateral flow along the upper wall; see Figs. 2 and 3.

When the Rayleigh number is further increased a second convection pattern emerges. This
is seen to happen at a value of Ra of approximately 800. In the upper left corner, another
cell emerges with counter-clockwise circulation, with the isotherms being distorted accord-
ingly. This bicellular solution was then traced back by decreasing the values of Ra and using
this bicellular solution for the initial estimates in the Gauss-Seidel iteration. It was found
that there was an overlap of the values of Ra in which two possible stable solutions exist. In
Figs. 2 and 3, the isotherms and streamlines for both the unicellular and bicellular solutions
at Ra = 400 and 800 are shown. These figures show that there is a bifurcation from a
parameter range in which just one solution exists to one where (at least) two distinct
solutions are possible. Such bifurcations have been treated in some detail for viscous flow by
Benjamin [14] for viscous flow and we expect that this bifurcation belongs to one of the
classes of bifurcations discussed in [14]. Also, bicellular convection has been reported by
El-Khatib and Prasad [15] in an investigation into the effects of stratification on thermal
convection in horizontal porous cavities.

Figure 4 shows the slip velocity Uw = (dr/idy)y=o on the bottom wall for a range of values
of Ra. (* represents the result corresponding to the bicellular solution at Ra = 800.) It can be

-0. 30

U

-0. 15

0. 00

0 1 E 2

Fig. 4. Slip velocity distribution Uw on the bottom wall for the heated case with E = 1. * represents the slip velocity
distribution for the bicellular solution at Ra = 800.
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seen that the slip velocity distribution on the heated section becomes uniform as the
Rayleigh number is increased. It should be also noted that there is very little difference in
the slip velocity between unicellular and bicellular solutions. This is because the secondary
cell occurs in the upper left corner and has only a local influence on the overall convective
flow.

In Fig. 5, we show the effect that the Rayleigh number has on the local heat-transfer rate
by defining the Nusselt number as

Nu() = d d) (28)

It is clear that the convection enhances the heat transfer significantly for the larger values of
the Rayleigh number considered (again * represents the results corresponding to the
bicellular solution at Ra = 800). We can see that there is also very little difference in the heat
transfer rate on the bottom wall between the one-cell and two-cell solutions.

Figure 6 shows the profiles of the horizontal velocity u across the layer at 5 = 0.3 and 0.6.
Figure 7 shows the temperature profiles across the layer again at 5 = 0.3 and 0.6. (* is used in
the same sense as before.) There is an initial rapid decay of the temperature near the bottom
wall for Ra = 800 indicating that a thermal boundary layer is developing there. Both Figs. 6
and 7 show that the velocity and temperature profiles are only a little different for the
one-cell and two-cell flows at Ra = 800.

(b) Cooled case
In Figs. 8 and 9, we present the isotherms and streamlines for a range of values of Ra when
the bottom wall is partially cooled. For Ra = 0 and 1, the isotherms and streamlines are
almost the same as those in the heated case apart from circulation now being counter-
clockwise, which once more confirms the conclusion that the heat transfer is dominated by
conduction when the Rayleigh number is low. As the Rayleigh number increases, the
isotherms become confined to a region above the cooled portion of the bottom wall. The
streamlines become closer together on the bottom wall near the point at which the cooling
ends, i.e. at x = 1. The centre of the cell moves downwards towards the bottom wall with its
horizontal position moving slightly beyond the line = 1 as Ra is increased. This shows that

10

Nu

5

Fig. 5. Local heat transfer rate Nu on the bottom wall for the heated case with e = 1. * represents the results for the
bicellular solution at Ra = 800.
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Fig. 6. Horizontal velocity distribution across the layer for the heated case with = 1. * represents the results
corresponding to the bicellular solutions at Ra = 800.

a boundary layer develops with increasing Rayleigh number and by Ra = 1500 this effect is
well pronounced. It is worth mentioning that the numerical solutions were somewhat easier
to obtain in this case rather than in the heated case, where the iteration converged extremely
slowly for values of Ra higher than 800. The slip velocity Uw and the local heat transfer rate
Nu are shown in Figs. 10 and 11 respectively (where * now represents the results for
Ra = 1500). From Fig. 10 we can see that the point at which the slip velocity reaches its
maximum approaches the point where the cooling ends.

A boundary-layer analysis was performed to reveal further the behaviour when the value
of Ra becomes large. It was found that

U, -Ra - /3 and Nu--Ra 1 /3 as Ra---> (29)

with the proportionality factors depending on the value of 5. Figure 12 shows the scaled slip
velocity and local heat transfer rate as suggested by (29) at 5 = 0.5 plotted against Ra x 10-2.
The negative value of the local heat transfer rate means that the heat flows from the layer
through the bottom wall. It is clearly seen that both sets of results tend to constant values as
Ra increases.

1. U

0.5

0. 0

1.u

0

0.5

0.0

0.0 0.5 y 1.0 0.0 0.5 Y 1.0

(a) (b)

Fig. 7. Temperature distribution across the layer for the heated case with = 1. * represents the results for the
bicellular solution at Ra = 800.
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Fig. 8. Isotherms for the cooled case for e = 1 and a range of values of Ra.

Figure 13 shows the profiles of the horizontal velocity u across the layer at : = 0.3 and 0.6.
Figure 14 shows the temperature distribution across the layer at 5 = 0.3 and 0.6; (again *
represents the results for Ra = 1500). The results shown in all these figures confirm that for
Ra large, a boundary layer with the scalings implied by (29) develops on the bottom wall at
the outer edge of which the lateral velocity and temperature both decay to zero which is the
state held outside the boundary layer.

The problem of the free-convection boundary-layer flow above a cooled (or below a
heated) horizontal surface has yet to be fully resolved, for either a Newtonian fluid or a
porous medium. The related work of Stewartson [16] and Gill et al. [17] showed, for a
Newtonian fluid, that a boundary layer starting at the edge of the plate was possible only in
the heated case, with a similar result for porous media being given by Merkin and Zhang
[18]. The situation for the cooled case is more complex; here the boundary layer, which must
now start at the centre of the plate, is driven by the change in boundary condition at the
edge of the cooled section, and any solution must take into account these two distinct effects.
The existence of such boundary-layer flow has been demonstrated, for a Newtonian fluid, by
Rotem [19] (experimentally) and Singh and Birkebak [20], and, for a porous medium, by our
numerical solutions described above, but the analysis [20] so far has been confined to the
application only of integrated forms of the boundary-layer equations.
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Fig. 9. Streamlines for the cooled case for = 1 and a range of values of Ra. The maxima of the stream function
(the minima are zero) are 0.0399 at Ra = 0; 0.0396 at Ra = 1; 0.0289 at Ra = 50; 0.0235 at Ra= 100; 0.0087 at
Ra = 800; 0.0059 at Ra = 1500.
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Fig. 10. Slip velocity distribution Uw on the bottom wall for the cooled case with = 1. * represents the results foi
Ra = 1500.
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Fig. 11. Local heat transfer rate Nu on the bottom wall for the cooled case with e = 1. * represents the results for
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Fig. 12a. Scaled slip velocity Uw Ral /3 at 4 = 0.5.
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Fig. 12b. Scaled local heat transfer rate Nu Ra-" 3 at = 0.5.
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Fig. 13. Velocity distribution across the layer for cooled case with = 1.
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Fig. 14. Temperature distribution across the layer for the cooled case with = 1. * represents the results for
Ra = 1500.
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Fig. 15. Isotherms for the heated case for a range of
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Fig. 16. Streamlines for the heated case = 0.1. The
maxima and minima of the stream function are
-0.1078, 0 at Ra = 0; -0.1079, 0 at Ra = 1; -0.1097,
0 at Ra = 4.5 (one cell); -0.1101, 0 at Ra = 5.4 (one
cell); -0.1985, 0.1051 at Ra=4.5 (multi-cell);
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4.2. Effects of the aspect ratio

(a) Heated case
To investigate the effects of the aspect ratio on the convection pattern and heat transfer
characteristics, we obtained numerical solutions for different values of e. Figures 15 and 16
show the isotherms and streamlines respectively for = 0.1. For Ra = 1, the isotherms are
almost the same as those of pure conduction (Ra = 0); the streamlines display a cluster close
to S = 1. We also found that two stable solutions exist for some ranges of values of Ra. By
increasing the value of Ra, the unicellular solution could be continued for values of the
Rayleigh numbers up to about 5.4. On increasing further the value of Ra, the solution
becomes multi-cellular, i.e. the streamlines form more than one cell with neighbouring cells
having opposite senses of circulation. This multi-cellular solution was then continued by
decreasing the value of Ra down to 4.5 at which point the solution reverted to the one-cell
case. It is interesting to note that a small change of the value of Ra has little influence on the
isotherms and streamlines for the unicellular solution. This is because at these low values of
Ra conduction predominates for the heat transfer in this one-cell case. However, small
changes in the value of Ra do have a pronounced influence on the isotherms and streamlines
for the multi-cellular solutions; see Figs. 15 and 16. The number of cells depends on the
value of Ra, with the cells near the axis of symmetry being more developed than the "end"
cell, which breaks into more cells with the increasing of the Rayleigh number. By Ra = 7, we
can see six distinct cells. Beyond this value of Ra, it was difficult to obtain an accurate
converged solution with the iteration being very sensitive to small perturbations.

As expected, this multi-cellular convection pattern greatly influences the heat transfer rate
on the bottom wall. This can be seen in Figs. 17 and 18 which show the slip velocity Uw and
the local heat transfer rate Nu, respectively, along the bottom wall at Ra = 1 and at Ra = 7.

(b) Cooled case
Figures 19 and 20 show the isotherms and streamlines for the cooled case for a range of
values of Ra with = 0.1. Here no difficulty was found in obtaining fully-converged solutions
up to Ra = 1500. The flow remained unicellular throughout, and a boundary layer developed
on the bottom wall as the value of Ra increased. The flow pattern and heat transfer

I U I ,.
.

0.0

-9.

D. U

Nu

2. 5

0.0

Fig. 17. Slip velocity distribution U, on the bottom
wall for the heated case for E = 0.1 and Ra = 1, Ra = 7.

Fig. 18. Local heat transfer rate Nu on the bottom
wall for the heated case for e = 0.1.
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E

Ra= 1500

0 1

Fig. 19. Isotherms for the cooled case for a range of values of Ra with -= 0.1.

characteristics were qualitatively the same as for the E = 1 case, apart from the difference

that for the smaller aspect ratio there is a clustering of streamlines above the point where the
cooled section of the bottom wall ends. This clustering of streamlines was also observed in

the unicellular flows in the heated case. This is a local effect and seems to have little overall

effect on the heat transfer. So it appears that the aspect ratio is a much less important factor
in determining the overall heat transfer and flow characteristics for the cooled case than it is
for the heated case.

5. Narrow gap solution

Here we derive a solution of equations (12) and (13) under the assumption that

< 1 and Ra is of 0(1). (30)

We expand the stream function q and the temperature 0 in the form

(X, y) = 0o(X, y) + eq 1 (X, y) + -.. (31)

O(x, y) = 0(x, y) + 01(X, y) +...

I
Y

0

I

Y

0

Y

0

l

Y

Ra=O

Ra=l

Ra=50

0 1

(32)
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Fig. 20. Streamlines for the cooled case for a range of values of Ra with e = 1. The maxima of the stream function
(the minima are zero) are 0.1073 at Ra = 0; 0.1072 at Ra = 1; 0.0930 at Ra = 50; 0.0824 at Ra = 100; 0.0264 at
Ra = 1500.

Substituting expansions (31) and (32) into equations (12) and (13), and solving the resulting
equations gives, at leading order,

-+Ow(X)(1-y), Ox<1,Oo(x, y) =-o, X>,

0;(x)
y(1 - y)(2 - y), x < 1 ,

O, x>l,

(33)

(34)

where the upper sign is for the heated case, the lower sign for the cooled case (all double
signs in the following are used in this sense) and where the prime denotes differentiation with
respect to x.

The solution can be continued in a straightforward manner to O(e) and we find, in
O0x<1. that
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Ra O12

1(x, y) = 360 (60y 2 - 80y3 + 45y4 - 9y 5 - 16y)360

Ra 060" 3
+ (20y 3- 15y 4 + 3y - 8y), (35)360

q1(x, y) = Ra 20 (3 2 y - 56y3 + 42y5 - 21y 6 + 3y7)

Ra 0',0w
+ 15120 (64y - 280y 3 + 420y 4 - 294yS + 105y6 - 15y7) (36)

15120

(with 1 = 0 , 1 =0 in x>1).

We can now examine how the solution for small E, as given by (33) and (34), compares with
the numerical solution for = 0.1. With Ow(x) given by (18) we can see that the isotherms
and streamlines patterns as calculated from (33) and (34) have the same forms for the
smaller values of Ra (unicellular flow) shown in Figs. 15 and 16 (for the heated case) and in
Figs. 19 and 20 (for the cooled case). A more direct comparison can be made using the wall
velocity U and the heat transfer Nu. From (18), (33) and (34) we have, for the
leading-order solution, Uw = Tx/3 + · · · and Nu = +(1 - x2 ) + · · ·. This behaviour can be
clearly seen in Figs. 17 and 18, respectively, for the numerical solution with Ra = 1.

The solution given by (33)-(36), with 0, as given by (18), has a discontinuity at x = 1, and

a further region, centred on x = 1, is required to remove this discontinuity. It can be seen
from (33) that is of 0(1 - x) and ii is of 0(1) as x--> 1, which suggests that in this region
we write

(x, y) = ('7, y)+ +", (37)

0(x, y)= e(7, y)+ , (38)

71 = (X - 1)/E . (39)

This solution is then valid in a square region of width of O(E) above the point where the
heating or cooling ends. On substituting (37) and (38) into equations (12) and (13) and
letting E--> 0, we find that q and 0 satisfy the equations

d2 +y 2 r ' (40)
di2 dy2 dq

2 + 2' = Rat (d dO _ d (41)
dn dy dy ' d dy

To complete the problem, the matching condition as 7--> -- needs to be evaluated. To do
this we substitute transformation (39) into the solutions given by (33)-(36) and then let
E - 0, noting that to obtain the leading-order term 0 we need to consider both the terms 00

and 01 in expansion (32). This gives the boundary conditions
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1- + ~ (2y - 3y2 + y3 ), (42)

Ra
-2(1 - y) + -9 (60y 2 - 80y3 + 45y 4 - 9y 5 - 16y). (43)

as 7 -, Oy 1; as well as

0 --, >00 as 71+--+o, O0y1l,

=0, 6=0 ony=1,

~=0, 0=0 ony=0, 07i<, , (44)

t=0, 0 =T+2iq ony=0, --oo < <0.

The problem given by equations (40) and (41), and boundary conditions (42)-(44) has to be
solved numerically and to do this we first apply the transformation

= -cot (45)

which maps (0, r) in to (-x, +x) in '. It should be pointed out that the matching
condition as / --> -, or equivalently - 0, is a singular condition. A further transformation

= T 2 (1 - y) (46)

was introduced to cope with this singularity. Finally the equations become

__2_ 2 c9 sin2g'
sin45 2 + sin 2 sin 2 - + d = -sin2 - + 2 2(1-y), (47)

2 dy 2 2 1y2 a5 47

d20 aO a2o 2e( C d o d4,e0
sin5 +sin + sin sin2 - + 2 = Ra sin2 - d y )

2 dy2 dy y ; d;
sin2~ at sin2g dt

2 Ra ( - ) - 2 Ra dy

sin4 ' sin 25 sin254 (1 - y) + 2 s 2 (1 - y) (48)

together with the boundary conditions

(1= + (2y - 3y 2 + y 3 ), (49)

Ra
O = 90 (60y2 - 80y3 + 45y4 - 9y 5 - 16y) (50)

on 5 = 0;
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'P=0, 0=0 ony=1, O< < 7r,

5 2'P,=0, 0=+2I ony=0, 2 s<rT,

2p=O, O = -+2cot -T ony=0, 0 < < -. (51)

Equations (47) and (48) subject to boundary conditions (49)-(51) were solved by a
procedure similar to that described above for the general problem. Figures 21 and 22 show
isotherms and streamlines for the heated case, and Figs. 23 and 24 for the cooled case. The
results displayed in these figures are in terms of 0 and ¢ in the ( , y)-plane; 5 = 7r/2 (:1.57)
corresponds to x = 0 in the original coordinate system. Since tends to infinity as -- 0, the
isotherms are presented by prescribing 0 at = 0 as

(0, y) = +2 x 104 (1 - y). (52)

The isotherms are equally spaced with the interval being 0.8. The streamlines are also
equally spaced with the minimum in the heated case and the maximum in the cooled case
being +0.013, respectively. As for the general problem, it was found to be much easier to
obtain converged solutions for this problem for the cooled case than for the heated case. In
this latter case, solutions could be obtained up to about Ra = 7 at which point the streamline

1

0.00 1.57 3. 14

Re=5

0.00 1.57 3.14

0.00 1.57 3.14

Fig. 21. Isotherms of the narrow gap solution; heated case.
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Fig. 22. Streamlines of the narrow gap solution; heated case.
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Fig. 23. Isotherms of the narrow gap solution; cooled case.
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Fig. 24. Streamlines of the narrow gap solution; cooled case.

plots suggested the break-up into subsidiary eddies. This is in line with the numerical
solutions for = 0.1, where we could obtain a unicellular solution for Rayleigh numbers up
to about this value. No such problem was encountered for the cooled case, with it being
seemingly possible to obtain solutions for any value of Ra. However, the form of the terms
of O(E) in expansions (32) and (33), as given by (35) and (36), require that E Ra < 1 rather
than just E < 1. It is then unrealistic to continue the solution to very high values of Ra and
our results are given only up to Ra = 100.

6. Conclusions

We have considered the effects of the Rayleigh number Ra and aspect ratio E on the
convection pattern and heat transfer characteristics for an infinite horizontal porous layer
with the bottom wall being partly heated or cooled. Using a numerical solution for the
heated case, we have found that two possible stable solutions exist for the values of Ra
within some range. When the aspect ratio = 1, the minimum value of Ra at which the
bicellular solution emerges is large (approximately 400) and the range of values of Ra which
allows double solutions, i.e. both unicellular and bicellular, is also large. One of the effects
of decreasing the aspect ratio is to decrease this minimum value and to reduce the range of
values of Ra over which two possible stable solutions exist. The other effect is that the value
of the aspect ratio determines the structure of the second solution: bicellular at E = 1 and
multi-cellular at E = 0.1 for the problem considered above. The numerical solutions for the
cooled case show that the convection pattern is always unicellular. A boundary layer
develops on the bottom wall when the Rayleigh number is high. In the limiting case where
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the Raleigh number tends to infinity, the lateral movement of fluid disappears everywhere
except within a thin boundary layer of thickness of O(Ra- 1/ 3) on the bottom wall.
Correspondingly, the temperature outside the boundary layer tends to the uniform ambient
condition.
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